US009304743B1

a2 United States Patent 10) Patent No.: US 9,304,743 B1
Breslau et al. 45) Date of Patent: Apr. 5, 2016
(54) CONVERTING FROM INCORRECT 7,496,892 B2* 2/2009 Nusscceviiiinins GOG6F 8/31
PROGRAM CODE TO CORRECT PROGRAM . _ 709/200
CODE 7,752,599 B2 7/2010 Takacsi-Nagy G0761F7§§1/11‘
. . 7,818,719 B2* 10/2010 Meijer GOG6F 9/4428
(71) Applicant: The MathWorks, Inc., Natick, MA 717/114
8,095,912 B2* 1/2012 Giuseppini GOGF 8/427
Us
714/715
(72) Inventors: Jason D. Breslau, Holliston, MA (US); 8,464,234 B2* 6/2013 Novillo ..oovvvvvrrrrrnnn. G0761F7§1/ 33
Fnu Balaji, Natick, MA (US) 8,732,674 B1* 52014 Agha ..cccoooeno.... GOGF 9/45516
717/130
(73) Assignee: The MathWorks, Inc., Natick, MA 8,843,907 B2* 9/2014 XU .ocovvoiiiiin GOGF 8/427
(Us) 717/140
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
%atserét lls SZ)((:):IL??) g;yesldjusted under 35 Forman et al, “Extremely Fast Text Feature Extraction for Classifi-
T ’ cation and Indexing”, ACM, pp. 1221-1230, 2008.*
Laboreiro et al, “Tokenizing Micro-Blogging Messages using a Text
(21) Appl. No.: 14/685,956 Classification A » *
pproach”, ACM, pp. 81-87, 2010.
(22) Filed: Apr. 14, 2015 (Continued)
Related U.S. Application Data Primary Examiner — Anil Khatri
(60) Provisional application No. 62/007,105, filed on Jun. (74) Attorney, Agent, or Firm — Harrity & Harrity, LLP
3,2014.
57 ABSTRACT
(51) Int.ClL 7)
GOG6F 9/144 (2006.01) A device may receive input text via a programming environ-
(52) U.S.CL ment associated with a programming language. The device
CPC ... GO6F 8/33(2013.01); GO6F 8/31 (2013.01) may tokenize the input text to generate tokenized text. The
(58) Field of Classification Search device may identify an invalid token string, based on the
0] 717/109-116 tokenized text, thatis invalid for the programming language.
IPC GO6F 8/31,8/33 The device may identify a token category pattern based on the
See application file for complete search history. invalid token string. The token category pattern may be a first
sequence of token categories. The device may identify a
(56) References Cited replacement pattern based on the token category pattern. The

U.S. PATENT DOCUMENTS

5,325,531 A * 6/1994 McKeeman GO6F 8/20
717/112

5,790,863 A * 8/1998 Simonyi GO6F 8/30
700/83

6,523,172 B1* 2/2003 Martinez-Guerra GOSF 8/427
704/9

7,127,704 B2* 10/2006 Van De Vanter GO6F 8/33
715/234

replacement pattern may be a second sequence of token cat-
egories that is different from the first sequence of token cat-
egories. The device may identify a replacement token string
based on the replacement pattern. The device may determine
valid program code, associated with the programming lan-
guage, based on the replacement token string. The device may
provide the valid program code.

20 Claims, 14 Drawing Sheets

noraie tokenizod text)

v
ased on the tokenized
ge

US 9,304,743 B1
Page 2

(56) References Cited Hirankan et al, “Detection of Wordplay Generated by Reproduction
OTHER PUBLICATIONS of Letters in Social Media Texts”, IEEE, pp. 6-10, 2013.*

Cutter et al, “Unsupervised Font Reconstruction Based on Token
Co-occurrence”, ACM, pp. 143-149, 2010.* * cited by examiner

US 9,304,743 B1

Sheet 1 of 14

Apr. 5, 2016

U.S. Patent

E

» | + &= B (Blaszunu <<
sueaw noA picy
] 40} ‘) peouefequn AjqIssOd—108.4400U) SI JUBLIGIR]S JO UOISSBIAXT J0LT
_
++8)SZWNU
sBulys uosy 0} piieaut a|diinw 199400 +4+B)ASZUWNU <<

[+ Bz B
uesw noA picl
Jo84I00U1 40 3)3)dWoaU) ST JUBWSIRIS IO UOISSAIAXT [J0.L1T

Bulis uaoy usweoridal Lo paseq apoo weriboid pyeA spircid

{11 [+] [e] [=] [e] Buws ueo] Juswadeidal Ayusp: 0} wianed asn +Mm
‘I+] [+1 [e] Buwys usyo) pieAur Uo paseq waed e Ajuapy S <<
. =B <<

US 9,304,743 B1

Sheet 2 of 14

Apr. 5, 2016

U.S. Patent

0¢¢c
(301) uswiuosaug
BSunndwon jeaiuyos |

0¢e
80IAB(] JOAIS

¢ 9Old

(174
Hiom)aN

0144

(30L) Juswuodaug
Bunndwon eowyos |

01¢
20UAS(Q JUSHD

¥— 00z

US 9,304,743 B1

Sheet 3 of 14

Apr. 5, 2016

U.S. Patent

0.¢

a0BLIaIU|
UOHEOIUNLILLIOYD)

€ Old

9F

jusuodwo)
indino

e

usuodwion
nduy)

02
301

ove
usuodwon
abeioig

O
™)
)

AIOWIBIN

Gce

JOSS8%0.4d

»/ 0Le

sng

¥Y— 00¢

US 9,304,743 B1

Sheet 4 of 14

Apr. 5, 2016

U.S. Patent

V¥ "Old

<snjd><snjd><iens :wejed Aioboied uaNo | l«—B7F
1081109} 10 8)8jdwiooUl St JUsLWBIElS JO uoissaldxy oL «—Zp
ipeau} «— [+] [+] [e] ax@) peziuayo | «—CTF
++B X9 iInduj «—01¥
4ap
++8 <<
Sov
L =8<<

012
aoIAB(] UBND)

US 9,304,743 B1

Sheet 5 of 14

Apr. 5, 2016

U.S. Patent

[1] [+] [e] [=] [e] Buwms uexoy

juswaoeidal arepiea Hus
uayo0} Juswaoe|des pue

usaned yuawaoedals Ajyusp|

0i¢
a0IAe(JUBlD

gy 'Old

(I
ajgeueA >;N m_Qmem >N nm_Qwam LGl
B pue Jagwnu g :
ussmaq Joresado seuwin Jo ayeidwoour s M:@Emym«w
' Jo uolssaudxgy
a1 spesu 3O L siyL <IBA><SBUW><IaqUINU> <IBA><I9QUINU>
| “(++X) | + e = e adwexy ++8 ajdwexs !
Il ioyesado uswaiou toaioout | —
_ 4s0d oyy poddns <, ba> <SNid> 1o gyeiduiooul s juewaiels N~GEF
10 uoissaidx I
" JOU $90p 3D SIyL <JeAs <ubisses <iens> <shid> <shjds> <ieA>) 3 [
||||||||||| ‘q=e'z=qodwexy | z=q=emdwexa| |
*9pO0o JO Ul| dwies) 6 5
ou1 Ul SUBLILBISSE <ILUBS> <IBAS <lwaes> | Wswubisse ue o} jebue) piea
o_a_%_:E toaa.sm e jou s1 ubis spenbe ay) Jo Jo)
Jou w.mon 2oL Sl <UBisses <leAs> <IlUeS:» < > <ubjsses <ieAs 8y} 0} uoissaidxe ey
<> <ubisses <iens <ubisses <ien>
"jojesado =4+ ay) poddns Lax=xcoduea feeldue uawuBisse ue Joj yabiey piea
iy s <uPisses | ©lou st ubis sjenbe ayy Jo Yoy
10U $90p 301 SIUL <> <snid> <> <ubl
oy} 03 ucissauidxs ay]
<lens> <ubisses <leas «sn|ds> <JeA>
X8} ydwoid 1043 usoned Juswase|doy | uisyed Aiobajes usyoy) Joag ——~0E¥
¥— ooy

US 9,304,743 B1

Sheet 6 of 14

Apr. 5, 2016

U.S. Patent

v 'Old

Q

Vi
ON ?wo\,

(++X) 1038:10d0 JuBWBIU-ISOd 8y Joddns jou sa0p DL SIYL

L + B = 0<<

Buys ueyjo) Juswededal :uBauI NoA pIQ

uo paseq apod weiboid pljea
B epirold pue ajeiausr)

Svv

81 JUBWSY.)S 10 UoISSaIdXT oug

++B2 <<

L =E<<

‘ 012
~05F - 901meg 8D

US 9,304,743 B1

Sheet 7 of 14

Apr. 5, 2016

U.S. Patent

ovs A

g9

/m_‘m

++B

foters A 41 + B =eueswnoA pq,
=
oS 103 ON W 05
>
-/ l+e=@
(1] [+] [el [=] [e]
-
[+] [+] [e] >
[+] [+] [e] w Geo
08S A ++8 >
++B ‘Joiig
cze Jolig
++8 ‘1013
e
Joui3
1043

++B

W 0cs

S0s

+4B

US 9,304,743 B1

V9 'Old

<ieA><Jsquinus><ubisses<snid><iens wueljed Aiob81e0 uaMo] l«—&79
1084100U} 10 8)a|dwoou] § JUBLUSIR]S J0 Uoissaidxy o4 l«—§79
ipieAut «—— [A] [Z] [=] [+] [x] :1x8) poziuayo] l«—5Tg

AZ =+X X971 Induy <519

Sheet 8 of 14

Apr. 5, 2016

. %4
“.,. 90IAS(UBD

iy

DO

U.S. Patent

¥— 009

US 9,304,743 B1

Sheet 9 of 14

Apr. 5, 2016

U.S. Patent

% []
ooy €9 OIS

(A1 L) [2} [=] [+] [X] Buins uaxoy

uswiaoe|dal sepliea Buns
ua)0) Juswaoedas pue

ujened jusulade|das Auep)

OF9 e
—...l T e g— _
| ‘glqeueA A2 ojdwexg Az :ojdwexg N~]
| B pue Jsquinu e ‘]
UseMIad Joreiado Sl J0 819|dwony S| JuswIvlels —_—
| 194 10} h 3O uoISSBIdXT b~5€9
f| ©ulsposu 3ol syl <lBA><SBU><JogquInuU > <lBA><IOqUINU> . “
] oot gsesapeeapeseareos B ey~ S —————————— — T T !
3% [+ &= B djdilexy ++B aidwex] 1590
Jojeiado juswaiou } ‘
Jsod ay) poddns <ubu> <Snid> 10 9)9|dwioou si M:@Emﬁw
30 uolssaidx
Jou Sa0p JD L Sl <JBA> <ubisses> <ieA> <snyds <snid> <ieAs ’ 4
‘g =8z =q:9adwex3 ‘2 = g = e gidwexy
‘8p02 JO BuY BWeS . 6 B
oU) Ut SJUBWUBISSE <IWBS> <IBA> <lwess | uewubisse ue Joj 1abie; piea
ma_raE toaa.:w e jou si uBis sjenba auy jo Y|
ou m.mo_u o1 Sl <UBISSE> <iBA> <ILUOS> < > <ufisses <ieAs ay) 0} uoissaidxa ay |
< > <ublsses <igAs <ubisses <ien>
= X ajdwe =~ :
"joyesado =+ oy} poddns £ RmRRERd L BfdulE Juswsubisse ue Joj Jobie) piea
<> <sn|d> <> <ubisses | € 10u si ubis sjenba sy Jo Yo
10U 80D 30| Syl 8y} 0} uoissaldxa ay |
<JBA> <UDISSE> <IBA> <snjd> <iBA>
9] jdwoly 10113 uiayed uawaoeidey | uieped Alobajeo uayo | 10413 089
¥— 009

US 9,304,743 B1

Sheet 10 of 14

Apr. 5, 2016

U.S. Patent

J9 9Old

69 —> <IBA><SOW><Jagquinu><ubisses<snjds<ieas (uianed Alobajes uayo |

uswubisse ue 1o}
059 —> 10648} pijea e jou si ubis sjenbsa a8y} Jo Ya| 8y} 0} uoissaldxs sy Houg

5% > ipieaui <« [A]][] [=] [+] [X] Buwis uexoy jusweoejdey

012
so1Ae(] UBIID

=

US 9,304,743 B1

Sheet 11 of 14

Apr. 5, 2016

U.S. Patent

A1 1] (21 +] D4 [=] [X] Bus uexoy
Juswiaoejdal ayeplea Bulgs

uayo} Juswaoejdal pue
uieped wewsoeidas Ajus

[¢]%4
s01A8(] JUBIID

PI

ag "oid

‘B|qeueA
e pue Jequinu e
usamaq Jojeledo sewi

8y} speau 401 syl

K.z ajdwexg

<JBA><SOUW><JoquInU>

Az :9)dwiexy

<JBA><IBqWINU>

J091J02U
10 219[dWoDUl S1 JUsWBlR]S
Jo uoisseidxg

(++X)
Jo1es5do JUsWBLOU
~1sod ey} poddns

Jou s80p 304 Syl

I + B = & ajdwexg
<ubu> <SN|d>

<Jen> <ubisses <len>

++& 9|dwexy

<snids> <snjd> <ien>

"109.J00U]
10 dejdwonur st JusWwelels
0 uoissaidxy

"9p02 JO BuI| awes
ay) U syuswubisse
a)diyynwi woddns
jou seop JDL sUL

‘0= €7 =g eduexy
<IWBS> <liBA>
<UDISSE> <IBA> <IWLBS>

< ' <ubisses «<ieas>

‘2 = q = e adwexy
<JWBS>
< > <ubisses «ieA>

<ubisses <ieA>

uswubisse ue 1o} 10bie) piea
e jou s| ubis sienbs ayy jo U9
ay) o) uoissaudxa ay]

“10jelado =+ 8y} Woddns

/ + X = x :@dwex3

J=+x9dwex3

<> <ubisses

‘Juawulisse ue Joj 1ebie) piea
e J0u s ubis sjenba ayy jo Y9

<> <SN|ds
10U 80P 301 SUL ay) 0} uoissaidxa et
<leas <ubisses <ien> <snid> <ieA>
xa) jdwoid joug | ulened juswaoeidey | uieped AioBejeo ueyoy | 0000 oz 059
¥— 009

US 9,304,743 B1

Sheet 12 of 14

Apr. 5, 2016

U.S. Patent

49 "Oid

Buis usyo} Jusweoe|dal
uo paseq apod weiboid piea
e apircid pue 9jeiauan)
049

Q

0

N

i
Tmm;

“J0}es9do =+ sy} yoddns Jou seop JD) SIUL 2
"gigelleA B pUB Jaquuinu B usemjaq Jojelado saw ay) spasu 301 Sl “L

'\PN + X = X<

ues noA pig

“*§1 JUSWIBIE]S JO U0ISSaLdXT osT

A2 =+ X <<

~089 ",
~579

)
\

\
\
"

, otz
% 8omeq juslo

¥ 009

US 9,304,743 B1

Sheet 13 of 14

Apr. 5, 2016

U.S. Patent

LD

E

>
LA L2 X =xueaw hok pig,
|
10113 ON Hv 5o/
»
A, Z+X=X
10443 W 0S/
>
AZ+X=X
|
[AlZI=1[+1X] w gel
>NH+X >
AZ=+X
>
Joug gz Jou3
< KZ=+X 10115 W 0zL
=
3013
S0.
Rl Cvam— |
Z=+X | RZ=+X ZoGX

U.S. Patent Apr. 5, 2016 Sheet 14 of 14 US 9,304,743 B1

Receive input text via a technical computing environment
associated with a programming language

v

Tokenize the input text to generate tokenized text

v

Identify an invalid token string, based on the tokenized
text, that is invalid for the programming language

v

Identify an error associated with the invalid token string

v

825 Identify a token category pattern based on the invalid token string

v

identify a replacement pattern based on the token category
pattern and/or the error

v

identify a replacement token string based on the replacement
pattern and/or the input text

o0

O

O
() (0]

% @ © j
[4;] (wn) [6)]

LA A A A

o
N
[ew]

\/\?/\/U

&/

./

o]
W
[9)]

LA
N

Is the replacement NO

token string valid?

840

Determine valid program code, associated
845 with the programming language, based on the
replacement token string

v

850 Provide the valid program code

\/

FIG. 8

US 9,304,743 B1

1
CONVERTING FROM INCORRECT
PROGRAM CODE TO CORRECT PROGRAM
CODE

RELATED APPLICATION

This application claims priority under 35 U.S.C. §119
based on U.S. Provisional Patent Application No. 62/007,105
filed on Jun. 3, 2014, the content of which is incorporated by
reference herein in its entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an overview of an example imple-
mentation described herein;

FIG. 2 is a diagram of an example environment in which
systems and/or methods, described herein, may be imple-
mented;

FIG. 3 is a diagram of example components of one or more
devices of FIG. 2;

FIGS. 4A-4C are diagrams of an example implementation
of'converting from incorrect program code to correct program
code;

FIG. 51s an example sequence diagram for converting from
incorrect program code to correct program code;

FIGS. 6 A-6E are diagrams of another example implemen-
tation of converting from incorrect program code to correct
program code;

FIG.7is an example sequence diagram for converting from
incorrect program code to correct program code; and

FIG. 8 is a flow chart of an example process for converting
from incorrect program code to correct program code.

DETAILED DESCRIPTION

The following detailed description of example implemen-
tations refers to the accompanying drawings. The same ref-
erence numbers in different drawings may identify the same
or similar elements.

Converting code from a first programming language to a
second programming language may be difficult and error
prone. Users, skilled in one programming language, may not
possess the specific semantic knowledge of a second pro-
gramming language to accurately implement their intended
code in an efficient and syntactically correct manner and/or
format in the second programming language. In some cases,
auser may provide text input that is not specific to a program-
ming language, such as a mathematical expression, which
may be syntactically incorrect for a programming language.
Conventional environments may issue an error indicating that
an environment is incapable of correctly parsing the syntac-
tically incorrect expression. Implementations described
herein provide a user with feedback regarding the semantic
accuracy of the user’s input code or text. For example, the
feedback may include an automatic correction of input code,
an indication on a user interface that input code is incorrect
and a suggestion to correct the input code, or the like. This
feedback may enable more efficient, syntactically-correct
implementation of code when the input code is syntactically
incorrect for the intended programming language.

FIG. 1 is a diagram of an overview of an example imple-
mentation 100 described herein. As shown in FIG. 1, imple-
mentation 100 may include a client device (e.g., a desktop
computer, a laptop computer, etc.) that hosts a technical com-
puting environment (TCE) used to input and/or execute pro-
gram code. As shown, a user may input text via a user inter-
face (e.g., a code editor) of the TCE, and may receive

10

15

20

25

30

35

40

45

50

55

60

65

2

feedback identifying syntactic errors in the text. Recognizing
an error in the input text, the client device may suggest syn-
tactically error-free program code, corresponding to the text,
and may provide the suggestion via the user interface. In some
cases, the client device may automatically replace syntacti-
cally-incorrect input text with syntactically-correct program
code.

As an example, and as shown in FIG. 1, assume that the
user inputs the text “a=7" and “a++” via the user interface.
Assume that the text “a++” is syntactically incorrect for a
programming language associated with the TCE, and that the
text “a++” results in an error when compiled and/or executed.
As shown, assume that the text “a++” results in an error of
“Expression or statement is incomplete or incorrect.” Based
on detecting the error, the client device may identify an
invalid token string associated with the text “a++,” shown as
[a] [+] [+], where each item in brackets represents a token. An
invalid token string may use or represent grammar that is
unsupported by or otherwise incompatible with the TCE. The
client device may identify a pattern based on the invalid token
string and/or based on the error, and may use the pattern to
identify a replacement token string, shown as [a] [=] [a] [+]
[1].

The client device may provide valid program code based on
the replacement token string, shown as “a=a+1.”” The valid
program code may represent syntactically-correct program
code for a programming language associated with the TCE.
Furthermore, the valid program code may be program code
that the user intended to input, had the user known the syntax
of'the programming language associated with the TCE. In this
way, the client device and the TCE may make inputting valid
program code easier, by allowing users to input program
code, mathematical expressions, or the like, in a language
(e.g., aprogramming language, the language of mathematics,
etc.) with which the user is familiar.

As further shown in FIG. 1, the client device may employ
techniques described herein to correct multiple errors associ-
ated with input text. For example, assume that the user inputs
the text “num?2str(a++” via the user interface. Assume, as
above, that the text “a++,” included in the input text, is syn-
tactically incorrect for the programming language associated
with the TCE, and that the text “a++” results in an error of
“Expression or statement is incomplete or incorrect.” Further,
assume that the text “num2str(a++” results in an error of
“Expression or statement is incorrect—possibly unbalanced
(, {, or [” because the input text is missing a closing paren-
thesis. In this case, the client device may use techniques
described herein (e.g., in an iterative manner) to correct both
errors and generate the valid program code “num?2str(a), a=a+
1,” which is valid for the programming language associated
with the TCE. For example, the client device may identify a
pattern based on an invalid token string, may use the pattern to
identify a replacement token string, and may provide valid
program code based on the replacement token string.

In this way, the client device may reduce user frustration
associated with writing program code in a language with
which the user in unfamiliar, by correcting invalid input text
(e.g., program code). Furthermore, the client device may
assist a user in learning a programming language by teaching
the user the syntax of the programming language when the
user inputs syntactically-incorrect text (e.g., by suggesting
correct program code via a user interface). Furthermore, the
client device may save computing resources (e.g., memory,
processing power, etc.) by preventing execution of incorrect
program code.

FIG. 2 is a diagram of an example environment 200 in
which systems and/or methods, described herein, may be

US 9,304,743 B1

3

implemented. As shown in FIG. 2, environment 200 may
include a client device 210, which may include a technical
computing environment (TCE) 220. Furthermore, environ-
ment 200 may include a server device 230, which may include
TCE 220, and a network 240. Devices of environment 200
may interconnect via wired connections, wireless connec-
tions, or a combination of wired and wireless connections.

Client device 210 may include one or more devices capable
of receiving, generating, storing, processing, and/or provid-
ing program code and/or information associated with pro-
gram code (e.g., text, a token, an error, a pattern, etc.). For
example, client device 210 may include a computing device,
such as a desktop computer, a laptop computer, a tablet com-
puter, a mobile phone (e.g., a smart phone, a radiotelephone,
etc.), or a similar device. Client device 210 may receive input
text, via TCE 220, in a programming language associated
with TCE 220. Client device 210 may process the input text to
determine whether the input text is valid. When the input text
is invalid, client device 210 may determine valid program
code based on the input text, as described in more detail
elsewhere herein. Client device 210 may prompt a user (e.g.,
via a user interface of TCE 220) regarding the valid program
code and/or may replace the input text with the valid program
code. In some implementations, client device 210 may
receive information from and/or transmit information to
server device 230.

Client device 210 may host TCE 220. TCE 220 may
include any hardware-based component or a combination of
hardware and software-based components that provides a
computing environment that allows tasks to be performed
(e.g., by users) related to disciplines, such as, but not limited
to, mathematics, science, engineering, medicine, business,
etc., more efficiently than if the tasks were performed in
another type of computing environment, such as an environ-
ment that required the user to develop code in a conventional
programming language, such as C++, C, Fortran, Pascal, etc.
In some implementations, TCE 220 may include a dynami-
cally-typed programming language (e.g., the M language, a
MATLAB® language, a MATLAB-compatible language, a
MATLAB-like language, etc.) that can be used to express
problems and/or solutions in mathematical notations.

For example, TCE 220 may use an array as abasic element,
where the array may not require dimensioning. These arrays
may be used to support array-based programming where an
operation may apply to an entire set of values included in the
arrays. Array-based programming may allow array-based
operations to be treated as high-level programming that may
allow, for example, operations to be performed on entire
aggregations of data without having to resort to explicit loops
of'individual non-array operations. In addition, TCE 220 may
be adapted to perform matrix and/or vector formulations that
can be used for data analysis, data visualization, application
development, simulation, modeling, algorithm development,
etc. These matrix and/or vector formulations may be used in
many areas, such as statistics, image processing, signal pro-
cessing, control design, life sciences modeling, discrete event
analysis and/or design, state based analysis and/or design, etc.

TCE 220 may further provide mathematical functions and/
or graphical tools (e.g., for creating plots, surfaces, images,
volumetric representations, etc.). In some implementations,
TCE 220 may provide these functions and/or tools using
toolboxes (e.g., toolboxes for signal processing, image pro-
cessing, data plotting, parallel processing, etc.). In some
implementations, TCE 220 may provide these functions as
block sets or in another way, such as via a library, etc.

TCE 220 may be implemented as a text-based program-
ming environment (e.g., MATLAB software; Octave;

10

15

20

25

30

35

40

45

50

55

60

65

4

Python; Comsol Script; MATRIXx from National Instru-
ments; Mathematica from Wolfram Research, Inc.; Mathcad
from Mathsoft Engineering & Education Inc.; Maple from
Maplesoft; Extend from Imagine That Inc.; Scilab from The
French Institution for Research in Computer Science and
Control (INRIA); Virtuoso from Cadence; Modelica or
Dymola from Dynasim; etc.), a graphically-based program-
ming environment (e.g., Simulink® software, Stateflow®
software, SimEvents® software, Simscape™ software, etc.,
by The MathWorks, Inc.; VisSim by Visual Solutions; Lab-
View® by National Instruments; Dymola by Dynasim; Soft-
WIRE by Measurement Computing; WiT by DALSA
Coreco; VEE Pro or SystemVue by Agilent; Vision Program
Manager from PPT Vision; Khoros from Khoral Research;
Gedae by Gedae, Inc.; Scicos from (INRIA); Virtuoso from
Cadence; Rational Rose from IBM; Rhapsody or Tau from
Telelogic; Ptolemy from the University of California at Ber-
keley; aspects of a Unified Modeling Language (UML) or
SysML environment; etc.), or another type of programming
environment, such as a hybrid programming environment that
includes one or more text-based programming environments
and one or more graphically-based programming environ-
ments.

TCE 220 may include a programming language (e.g., the
MATLAB language) that may be used to express problems
and/or solutions in mathematical notations. The program-
ming language may allow a user to enter commands to be
executed by TCE 220. The programming language may be
dynamically typed and/or array-based. In a dynamically
typed array-based computing language, data may be con-
tained in arrays and data types of the data may be determined
(e.g., assigned) at program execution time.

For example, suppose a program, written in a dynamically
typed array-based computing language, includes the follow-
ing statements:

A=‘hello’

A=int32([1, 2])

A=[1.1,2.2,33]

Now suppose the program is executed, for example, in a
TCE, such as TCE 220. During run-time, when the statement
“A=‘hello’” is executed, the data type of variable “A” may be
a string data type. Later when the statement “A=int32([1, 2])”
is executed, the data type of variable “A” may be a 1-by-2
array containing elements whose data type are 32 bit integers.
Later, when the statement “A=[1.1, 2.2, 3.3]” is executed,
since the language is dynamically typed, the data type of
variable “A” may be changed from the above 1-by-2 array to
a 1-by-3 array containing elements whose data types are
floating point. As can be seen by this example, data in a
program written in a dynamically typed array-based comput-
ing language may be contained in an array. Moreover, the data
type of the data may be determined during execution of the
program. Thus, in a dynamically type array-based computing
language, data may be represented by arrays and data types of
data may be determined at run-time.

TCE 220 may provide mathematical routines and a high-
level programming language suitable for non-professional
programmers, and may provide graphical tools that may be
used for creating plots, surfaces, images, volumetric repre-
sentations, or other representations. TCE 220 may provide
these routines and/or tools using toolboxes (e.g., toolboxes
for signal processing, image processing, data plotting, paral-
lel processing, etc.). TCE 220 may also provide these routines
in other ways, such as, for example, via a library, a local data
structure, a remote data structure (e.g., a database operating in
a computing cloud), a remote procedure call (RPC), and/or an
application programming interface (API). TCE 220 may be

US 9,304,743 B1

5

configured to improve runtime performance when perform-
ing computing operations. For example, TCE 220 may
include a just-in-time (JIT) compiler.

Server device 230 may include one or more devices
capable of receiving, generating, storing, processing, and/or
providing program code and/or information associated with
program code. For example, server device 230 may include a
computing device, such as a server, a desktop computer, a
laptop computer, a tablet computer, or a similar device. In
some implementations, server device 230 may host TCE 220.
In some implementations, client device 210 may be used to
access one or more TCEs 220 running on one or more server
devices 230. For example, multiple server devices 230 may be
used to execute program code (e.g., serially or in parallel),
and may provide respective results of executing the program
code to client device 210.

In some implementations, client device 210 and server
device 230 may be owned by different entities. For example,
an end user may own client device 210, and a third party may
own server device 230. In some implementations, server
device 230 may include a device operating in a cloud com-
puting environment. In this way, front-end applications (e.g.,
a user interface) may be separated from back-end applica-
tions (e.g., program code execution). Additionally, or alter-
natively, server device 230 may perform one, more, or all
operations described elsewhere herein as being performed by
client device 210.

Network 240 may include one or more wired and/or wire-
less networks. For example, network 240 may include a cel-
Iular network, a public land mobile network (PLMN), a local
area network (LAN), a wide area network (WAN), a metro-
politan area network (MAN), a telephone network (e.g., the
Public Switched Telephone Network (PSTN)), an ad hoc
network, an intranet, the Internet, a fiber optic-based network,
a private network, a cloud computing network, and/or a com-
bination of these or other types of networks.

The number and arrangement of devices and networks
shown in FIG. 2 are provided as an example. In practice, there
may be additional devices and/or networks, fewer devices
and/or networks, different devices and/or networks, or differ-
ently arranged devices and/or networks than those shown in
FIG. 2. Furthermore, two or more devices shown in FIG. 2
may be implemented within a single device, or a single device
shown in FIG. 2 may be implemented as multiple, distributed
devices. Additionally, or alternatively, a set of devices (e.g.,
one or more devices) of environment 200 may perform one or
more functions described as being performed by another set
of devices of environment 200.

FIG. 3 is a diagram of example components of a device
300. Device 300 may correspond to client device 210 and/or
server device 230. In some implementations, client device
210 and/or server device 230 may include one or more
devices 300 and/or one or more components of device 300. As
shown in FIG. 3, device 300 may include a bus 310, a pro-
cessor 320, a memory 330, a storage component 340, an input
component 350, an output component 360, and a communi-
cation interface 370.

Bus 310 may include a component that permits communi-
cation among the components of device 300. Processor 320 is
implemented in hardware, firmware, or a combination of
hardware and software. Processor 320 may include a proces-
sor (e.g., a central processing unit (CPU), a graphics process-
ing unit (GPU), an accelerated processing unit (APU), etc.), a
microprocessor, and/or any processing component (e.g., a
field-programmable gate array (FPGA), an application-spe-
cific integrated circuit (ASIC), etc.) that interprets and/or
executes instructions, and/or that is designed to implement

10

15

20

25

30

35

40

45

50

55

60

65

6

one or more computing tasks. In some implementations, pro-
cessor 320 may include multiple processor cores for parallel
computing. Memory 330 may include a random access
memory (RAM), a read only memory (ROM), and/or another
type of dynamic or static storage device (e.g., a flash memory,
amagnetic memory, an optical memory, etc.) that stores infor-
mation and/or instructions for use by processor 320.

Storage component 340 may store information and/or soft-
ware related to the operation and use of device 300. For
example, storage component 340 may include a hard disk
(e.g., a magnetic disk, an optical disk, a magneto-optic disk,
asolid state disk, etc.), a compact disc (CD), a digital versatile
disc (DVD), a floppy disk, a cartridge, a magnetic tape, and/or
another type of computer-readable medium, along with a
corresponding drive. In some implementations, storage com-
ponent 340 may store TCE 220.

Input component 350 may include a component that per-
mits device 300 to receive information, such as via user input
(e.g., a touch screen display, a keyboard, a keypad, a mouse,
a button, a switch, a microphone, etc.). Additionally, or alter-
natively, input component 350 may include a sensor for sens-
ing information (e.g., a global positioning system (GPS) com-
ponent, an accelerometer, a gyroscope, an actuator, etc.).
Output component 360 may include a component that pro-
vides output information from device 300 (e.g., a display, a
speaker, one or more light-emitting diodes (LEDs), etc.).

Communication interface 370 may include a transceiver-
like component (e.g., a transceiver, a separate receiver and
transmitter, etc.) that enables device 300 to communicate
with other devices, such as via a wired connection, a wireless
connection, or a combination of wired and wireless connec-
tions. Communication interface 370 may permit device 300
to receive information from another device and/or provide
information to another device. For example, communication
interface 370 may include an Ethernet interface, an optical
interface, a coaxial interface, an infrared interface, a radio
frequency (RF) interface, a universal serial bus (USB) inter-
face, a Wi-Fi interface, a cellular network interface, or the
like.

Device 300 may perform one or more processes described
herein. Device 300 may perform these processes in response
to processor 320 executing software instructions stored by a
computer-readable medium, such as memory 330 and/or stor-
age component 340. A computer-readable medium is defined
herein as a non-transitory memory device. A memory device
includes memory space within a single physical storage
device or memory space spread across multiple physical stor-
age devices.

Software instructions may be read into memory 330 and/or
storage component 340 from another computer-readable
medium or from another device via communication interface
370. When executed, software instructions stored in memory
330 and/or storage component 340 may cause processor 320
to perform one or more processes described herein. Addition-
ally, or alternatively, hardwired circuitry may be used in place
of or in combination with software instructions to perform
one or more processes described herein. Thus, implementa-
tions described herein are not limited to any specific combi-
nation of hardware circuitry and software.

The number and arrangement of components shown in
FIG. 3 are provided as an example. In practice, device 300
may include additional components, fewer components, dif-
ferent components, or differently arranged components than
those shown in FIG. 3. Additionally, or alternatively, a set of
components (e.g., one or more components) of device 300
may perform one or more functions described as being per-
formed by another set of components of device 300.

US 9,304,743 B1

7

FIGS. 4A-4C are diagrams of an example implementation
400 of converting from incorrect program code to correct
program code.

As shown in FIG. 4A, and by reference number 405,
assume that the user inputs the text “a=7"" and “a++” via the
user interface. Assume that the text “a++” is syntactically
incorrect for a programming language associated with TCE
220, and that the text “a++" results in an error when compiled
and/or executed. As shown by reference number 410, assume
that client device 210 receives the input text of “a++” based on
the user input. As shown by reference number 415, assume
that client device 210 tokenizes the input text by segmenting
the input text into meaningful programming elements, or
tokens (e.g., using lexical analysis, a lexer, a tokenizer, or the
like). As shown, assume that client device 210 tokenizes the
input text of “a++” into a string of three tokens, shown as [a]
[+] [+], where each token is shown in brackets. As further
shown, assume that client device 210 determines that this
token string is invalid for the programming language associ-
ated with TCE 220.

As shown by reference number 420, assume that client
device 210 identifies an error associated with the invalid
token string. In this case, assume that the token string of [a]
[+] [+] (e.g., based on the input text of “a++”) results in an
error of “Expression or statement is incomplete or incorrect.”
As shown by reference number 425, assume that client device
210 identifies a token category pattern based on the invalid
token string. A token category pattern may refer to a pattern of
(e.g., a particular combination and/or sequence of) tokens,
token categories, and/or literal values. A token category may
indicate a type of a token for the purpose of parsing. Examples
of'token categories include a variable, different types of math-
ematical operations (e.g., addition operator, subtraction
operator, multiplication operator, division operator, etc.), an
assignment operator (e.g., used to assign a value to a vari-
able), a number, a type of number (e.g., an integer date type,
a floating point data type, etc.), an array, or the like. As an
example, assume that client device 210 identifies a token
category pattern of <var> <plus> <plus> for the invalid token
string of [a] [+] [+], indicating that “a” is a variable (e.g.,
represented as “<var>"), and that the plus signs are addition
operators (e.g., represented as “<plus>").

As shown in FIG. 4B, assume that client device 210 uses a
data structure 430 to identify a replacement pattern (e.g., a
different token category pattern) based on the error and/or the
token category pattern. In some implementations, client
device 210 may determine the replacement pattern based on
the token category pattern associated with the input text.
Additionally, or alternatively, client device 210 may deter-
mine the replacement pattern based on the error associated
with the input text. For the purpose of FIG. 4B, assume that
client device 210 determines the replacement pattern based
on both the error and the token category pattern.

As shown by reference number 435, assume that the data
structure 430 indicates that the error of “Expression or state-
ment is incomplete or incorrect” and the token category pat-
tern of <var> <plus> <plus> are associated with a replace-
ment pattern of <var> <assign> <var> <plus> <“1”>. In this
example, <“1”> is not a token category, but a literal value of
1. As shown by reference number 440, assume that client
device 210 identifies this replacement pattern of <var>
<assign> <var> <plus> <“1”>, and generates a replacement
token string of [a] [=] [a] [+] [1] based on the replacement
pattern and the input text. For example, in the replacement
token string, client device 210 may represent the variable
token category (e.g., <var>) with the variable “a” (e.g., [a])
from the input text, may represent the assignment operator

10

15

20

25

30

35

40

45

50

55

60

65

8
token category (e.g., <assign>) using an equal sign (e.g., [=]),
may represent the addition operator token category (e.g.,
<plus>) using a plus sign (e.g., [+]), and may represent the
literal value of “1” with the number 1.

In some implementations, client device 210 may validate
the replacement token string in a similar manner as the token-
ized text (e.g., shown in FIG. 4A) to determine whether the
replacement token string is valid for the programming lan-
guage associated with TCE 220. If the replacement token
string is invalid, client device 210 may perform a similar
process to that shown in FIGS. 4A and 4B to determine a valid
replacement token string based on the invalid replacement
token string. For example, client device 210 may determine a
valid replacement token string based on an error associated
with the invalid replacement token string and a token category
pattern associated with the invalid replacement token string.
For the purpose of implementation 400, assume that the
replacement token string of [a] [=] [a] [+] [1] is valid.

As further shown, data structure 430 may store information
that identifies text for an error prompt to be provided for
display via a user interface. In this case, the text for the error
prompt is shown as “This TCE does not support the post-
increment operator (x++).” The error prompt text may pro-
vide an indication, to the user, of why a correction was made
to program code input by the user.

As shown in FIG. 4C, and by reference number 445,
assume that client device 210 uses the replacement token
string of [a] [=] [a] [+] [1] to generate and provide valid
program code. As shown by reference number 450, assume
that the valid program code is “a=a+1.” As shown in FIG. 4C,
client device 210 may provide a suggestion to the user via the
user interface, shownas “Did youmean. . ..” and may provide
an input mechanism for the user to select, for example, “Yes”
or “No.” If the user selects “Yes,” client device 210 may
provide the valid program code via the user interface, may
replace the input text with the valid program code, may
execute the valid program code, or may perform some other
action involving the valid program code. If the user selects
“No,” client device 210 may attempt to determine other valid
program code using the example operations described herein.
In some implementations, client device 210 may automati-
cally perform an action involving the valid program code
(e.g., providing the valid program code, replacing the input
text, executing the valid program code, etc.) without prompt-
ing the user for input regarding the valid program code. As
shown by reference number 455, client device 210 may pro-
vide error prompt text, identified from data structure 430, for
display via the user interface. For example, and as shown,
client device 210 may provide the text “This TCE does not
support the post-increment operator (x++).”

In this way, client device 210 may increase the ease and
efficiency of writing program code in a programming lan-
guage associated with TCE 220. By determining valid pro-
gram code based on invalid input text, client device 210 may
also save time and computing resources that would otherwise
be wasted by attempting to execute input text that is invalid
for the programming language associated with TCE 220.

As indicated above, FIGS. 4A-4C are provided merely as
an example. Other examples are possible and may differ from
what was described with regard to FIGS. 4A-4C.

FIG. 5 is an example sequence diagram 500 for converting
from incorrect program code to correct program code.

As shown in FIG. 5, TCE 220 may include multiple com-
ponents, such as a user interface, an interpreter queue man-
ager (IQM), an interpreter, a parser, a lexer, an error handler,
a syntax suggester, and a pattern matcher.

US 9,304,743 B1

9

For the purpose of FIG. 5, assume that a user has input the
text “a++” via the user interface. Assume that the text “a++”
is syntactically incorrect for a programming language asso-
ciated with TCE 220, and that the text “a++""results in an error
when compiled and/or executed. As shown by reference num-
ber 505, the IQM may receive the input text of “a++ based on
the user input, and may input this text into a queue for pro-
cessing by the interpreter. The interpreter may attempt to
interpret the text, and may pass a result of the interpretation to
the parser. The parser may parse the text, and may pass result
of parsing the text to the lexer.

As shown by reference number 510, the lexer may tokenize
the input text by segmenting the input text into meaningful
programming elements, or tokens. As shown, assume that the
lexer tokenizes the input text of “a++” into a string of three
tokens, shown as [a] [+] [+], where each token is shown in
brackets. As shown, the lexer may pass the tokens to the
parser, which may parse the tokens. In this case, assume that
the parser generates an error base on parsing the tokens, as
shown by reference number 515. The parser may pass the
error to the interpreter, which may in turn pass the error to the
IQM.

As shown by reference number 520, the IQM may pass the
error and the input text of “a++" to the error handler. As shown
by reference number 525, the error handler may provide an
error to the user interface, which may provide the error for
display. Further, the error handler may provide the error to the
syntax suggester. As shown by reference number 530, the
syntax suggester may pass the input text of “a++ to the lexer.
The lexer may generate tokens for the input text, as shown by
reference number 535 (e.g., [a] [+] [+]), and may pass the
tokens to the syntax suggester, which may pass the tokens to
the pattern matcher.

As shown by reference number 540, the pattern matcher
may identify a replacement token string, shown as [a] [=] [a]
[+] [1]. The pattern matcher may pass the replacement token
string to the syntax suggester. As shown by reference number
545, the syntax suggester may identify program code based
on the replacement token string, shown as “a=a+1,” and may
pass the program code to the parser. As shown by reference
number 550, the parser may determine that the program code
is valid, and may pass an indication, to the syntax suggester,
that there the program code is valid (e.g., is not associated
with an error).

As shown by reference number 555, based on the indica-
tion of no error, the syntax suggester may provide the valid
program code as a suggestion to the user interface, which may
provide the program code as part of a prompt to the user (e.g.,
“Did you mean a=a+1”). In this way, TCE 220 may convert
incorrect program code to correct program code.

As indicated above, FIG. 5 is provided merely as an
example. Other examples are possible and may differ from
what was described with regard to FIG. 5.

FIGS. 6 A-6E are diagrams of another example implemen-
tation 600 of converting from incorrect program code to cor-
rect program code. FIGS. 6 A-6E show an example of correct-
ing multiple errors associated with invalid input text.

As shown in FIG. 6A, and by reference number 605,
assume that the user inputs the text “x+=2y” via the user
interface. Assume that the text “x+=2y”’is syntactically incor-
rect for a programming language associated with TCE 220,
and that the text “x+=2y” results in an error when compiled
and/or executed. As shown by reference number 610, assume
that client device 210 receives the input text of “x+=2y” based
on the user input. As shown by reference number 615, assume
that client device 210 tokenizes the input text of “x+=2y” into
a string of five tokens, shown as [x] [+] [=] [2] [y], where each

10

15

20

25

30

35

40

45

50

55

60

65

10

token is shown in brackets. As further shown, assume that
client device 210 determines that this token string is invalid
for the programming language associated with TCE 220.

As shown by reference number 620, assume that client
device 210 identifies an error associated with the invalid
token string. In this case, assume that the token string of [x]
[+] [=] [2] [y] (and more specifically, the subset token string
of [2] [y]) results in an error of “Expression or statement is
incomplete or incorrect.” As shown by reference number 625,
assume that client device 210 identifies a token category
pattern of <var> <plus> <assign> <number> <var> for the
invalid token string of [x] [+] [=] [2] [y], indicating that “X” is
a variable (e.g., represented as “<var>"), that the plus sign is
an addition operator (e.g., represented as “<plus>"), that the
equal sign is an assignment operator (e.g., represented as
“<assign>"), that the value of 2 is a number (e.g., represented
as “<number>"), and that “y” is also a variable (e.g., repre-
sented as “<var>").

As shown in FIG. 6B, assume that client device 210 uses a
data structure 630 to identity a replacement pattern (e.g., a
different token category pattern) based on the error and the
token category pattern. As shown by reference number 635,
assume that the data structure 630 indicates that the error of
“Expression or statement is incomplete or incorrect” and the
token category pattern of <number> <var> (e.g., which is a
subset of the token category pattern of <var><plus><assign>
<number> <var>, identified as shown in FIG. 6A) are asso-
ciated with a replacement pattern of <number> <times>
<var>. As further shown, data structure 630 may store infor-
mation that identifies text for an error prompt to be provided
for display via a user interface. In this case, the text for the
error prompt is shown as “This TCE needs the times operator
between a number and a variable”

As shown by reference number 640, assume that client
device 210 identifies this replacement pattern of <number>
<times> <var>, and generates a replacement token string of
[2] [*] [y] based on the replacement pattern and the input text.
Client device 210 may replace [2] [y], in the invalid token
string [x] [+] [=] [2] [y], with the token string of [2] [*] [y] to
generate a replacement token string of [x] [+] [=] [2] [*] [¥].
As further shown, client device 210 may validate the replace-
ment token string of [x] [+] [=] [2] [*] [¥].

As shown in FIG. 6C, and by reference number 645,
assume that client device 210 determines that the replacement
token string is invalid, and determines an error associated
with the invalid token string. As shown by reference number
650, assume that the error is “The expression to the left of the
equals sign is not a valid target for an assignment.” As shown
by reference number 655, assume that client device 210 iden-
tifies a token category pattern of <var> <plus> <assign>
<number> <times> <var> for the invalid token string.

As shown in FIG. 6D, and by reference number 660,
assume that data structure 630 indicates that the error of “The
expression to the left of the equals sign is not a valid target for
an assignment” and the token category pattern of <var>
<plus> <assign> < .. .> (e.g., where <. .. > represents a
wildcard) are associated with a replacement pattern of <var>
<assign> <var> <plus> < . . . > As further shown, data
structure 630 may store information that identifies text for an
error prompt to be provided for display via a user interface. In
this case, the text for the error prompt is shown as “This TCE
does not support the +=operator.”

As shown by reference number 665, assume that client
device 210 identifies this replacement pattern of <var>
<assign> <var> <plus> <. .. >, and generates a replacement
token string of [x] [=] [x] [+] [2] [*] [y] based on the replace-

US 9,304,743 B1

11

ment pattern and the input text. Assume that client device 210
successfully validates this replacement token string.

As shown in FIG. 6E, and by reference number 670,
assume that client device 210 uses the replacement token
string of [x] [=] [x] [+] [2][*] [y] to generate and provide valid
program code. As shown by reference number 675, assume
that the valid program code is “x=x+2%y.” As shown by ref-
erence number 685, client device 210 may provide error
prompt text, identified from data structure 630, for display via
the user interface. For example, and as shown, client device
210 may provide the text “This TCE needs the times operator
between a number and a variable” and “This TCE does not
support the +=operator.” In this case, client device 210 cor-
rected two errors associated with the input program code, so
client device 210 provides text for two error prompts for
display.

As further shown in FIG. 6E, client device 210 may provide
a suggestion to the user to use the valid program code. Alter-
natively, client device 210 may automatically use the valid
program code without user input. In this way, client device
210 may increase the ease and efficiency of writing program
code in a programming language associated with TCE 220.
By determining valid program code based on invalid input
text, client device 210 may also save time and computing
resources that would otherwise be wasted by attempting to
execute input text that is invalid for the programming lan-
guage associated with TCE 220.

As indicated above, FIGS. 6A-6F are provided merely as
an example. Other examples are possible and may differ from
what was described with regard to FIGS. 6 A-6E.

FIG. 7 is an example sequence diagram 700 for converting
from incorrect program code to correct program code.

As shown in FIG. 7, TCE 220 may include multiple com-
ponents, such as a user interface, an interpreter queue man-
ager (IQM), an interpreter, a parser, a lexer, an error handler,
a syntax suggester, and a pattern matcher.

For the purpose of FIG. 7, assume that a user has input the
text “x+=2y” via the user interface. Assume that the text
“x+=2y” is syntactically incorrect for a programming lan-
guage associated with TCE 220, and that the text “x+=2y”
results in an error when compiled and/or executed. As shown
by reference number 705, the IQM may receive the input text
of “x+=2y” based on the user input, and may input this text
into a queue for processing by the interpreter. The interpreter
may attempt to interpret the text, and may pass a result of the
interpretation to the parser. The parser may parse the text, and
may pass result of parsing the text to the lexer.

As shown by reference number 710, the lexer may tokenize
the input text by segmenting the input text into meaningful
programming elements, or tokens. As shown, assume that the
lexer tokenizes the input text of “x+=2y” into a string of three
tokens, shown as [x] [+] [=] [2] [y], where each token is shown
in brackets. As shown, the lexer may pass the tokens to the
parser, which may parse the tokens. In this case, assume that
the parser generates an error base on parsing the tokens, as
shown by reference number 715. The parser may pass the
error to the interpreter, which may in turn pass the error to the
IQM.

As shown by reference number 720, the IQM may pass the
error and the input text of “x+=2y” to the error handler. As
shown by reference number 725, the error handler may pro-
vide an error to the user interface, which may provide the
error for display. Further, the error handler may provide the
error to the syntax suggester. As shown by reference number
730, the syntax suggester may pass the input text of “x+=2y”
to the lexer. The lexer may generate tokens for the input text,
as shown by reference number 735 (e.g., [x] [+] [=] [2] [¥]),

10

15

20

25

30

35

40

45

50

55

60

65

12

and may pass the tokens to the syntax suggester, which may
pass the tokens to the pattern matcher.

As shown by reference number 740, the pattern matcher
may identify a replacement token string, shown as [x] [=] [X]
[+] [2] [y]- The pattern matcher may pass the replacement
token string to the syntax suggester. As shown by reference
number 745, the syntax suggester may identify program code
based on the replacement token string, shown as “x=x+2y,”
and may pass the program code to the parser. As shown by
reference number 750, the parser may determine that the
program code is invalid, and may pass an indication, to the
syntax suggester, that there the program code is invalid (e.g.,
is associated with an error).

As shown by reference number 755, the pattern matcher
may identify another replacement token string, shown as [x]
[=] [x] [+] [2] [*] [y]- The pattern matcher may pass the
replacement token string to the syntax suggester. As shown by
reference number 760, the syntax suggester may identify
program code based on the replacement token string, shown
as “x=x+2*y,” and may pass the program code to the parser.
As shown by reference number 765, the parser may determine
that the program code is valid, and may pass an indication, to
the syntax suggester, that there the program code is valid (e.g.,
is not associated with an error).

As shown by reference number 770, based on the indica-
tion of no error, the syntax suggester may provide the valid
program code as a suggestion to the user interface, which may
provide the program code as part of a prompt to the user (e.g.,
“Did you mean x=x+2*y”). In this way, TCE 220 may convert
incorrect program code to correct program code.

As indicated above, FIG. 7 is provided merely as an
example. Other examples are possible and may differ from
what was described with regard to FIG. 7.

FIG. 8 is a flow chart of an example process 800 for con-
verting from incorrect program code to correct program code.
In some implementations, one or more process blocks of FIG.
8 may be performed by client device 210. In some implemen-
tations, one or more process blocks of FIG. 8 may be per-
formed by another device or a set of devices separate from or
including client device 210, such as server device 230.

As shown in FIG. 8, process 800 may include receiving
input text via a technical computing environment associated
with a programming language (block 805). For example,
client device 210 may receive input text via TCE 220, which
may include a programming environment associated with a
programming language. For example, TCE 220 may be
capable of compiling and/or executing program code associ-
ated with a first programming language, and may not be
capable of compiling and/or executing program code associ-
ated with a second programming language. In some imple-
mentations, TCE 220 may provide a user interface for receiv-
ing input text, such as a text editor, a code editor, a command
line interface, or the like.

In some implementations, the input text may include pro-
gram code that is valid for a particular programming lan-
guage, but that is invalid for another programming language.
Additionally, or alternatively, the input text may include text
that is not valid program code in any programming language.
In this case, the input text may include a string of characters.
For example, the input text may include a mathematical
expression. In some implementations, the input text may be
input (e.g., typed) by a user. Additionally, or alternatively, the
input text may be loaded from a file, or may be input in
another manner.

As further shown in FIG. 8, process 800 may include
tokenizing the input text to generate tokenized text (block
810). For example, client device 210 may tokenize the input

US 9,304,743 B1

13

text to generate tokenized text by segmenting the input text
into meaningful programming elements, or tokens (e.g.,
using lexical analysis, a lexer, a tokenizer, or the like). Insome
implementations, client device 210 may use one or more

delimiters (e.g., spaces, character separators, line breaks, 3

commas, semicolons, white space, etc.) to tokenize the input
text. As used herein, a token may be represented between
brackets. For example, the input text “Var_1=100,” which
may represent an assignment of the value 100 to the variable
“Var_1,” may be tokenized to [Var_1] [=] [100].

As further shown in FIG. 8, process 800 may include
identifying an invalid token string, based on the tokenized
text, that is invalid for the programming language (block
815). For example, client device 210 may analyze the token-
ized text to identify an invalid token string. A token string may
include a sequence of two or more tokens (e.g., two or more
consecutive tokens). An invalid token string may include a
token string that is not compilable or executable using the
programming language associated with TCE 220. In other
words, TCE 220 may not be able to compile and/or execute
the invalid token string. When attempting to parse the invalid
token string for compilation and/or execution, TCE 220 (e.g.,
a parser associated with TCE 220) may return an error.

As further shown in FIG. 8, process 800 may include
identifying an error associated with the invalid token string
(block 820). For example, when parsing the invalid token
string, client device 210 (e.g., TCE 220 executing on client
device 210) may generate an error. In some implementations,
the error may be identified by an error identifier (e.g., an error
code), such as an error number, a string of text that identifies
the error, or the like. In some implementations, a parser asso-
ciated with TCE 220 may identify and/or return the error
and/or the error identifier.

As further shown in FIG. 8, process 800 may include
identifying a token category pattern based on the invalid
token string (block 825). For example, client device 210 may
analyze the invalid token string to identify a token category
pattern associated with the invalid token string. A token cat-
egory pattern may refer to a pattern of token categories and/or
literal values (e.g., a particular combination and/or sequence
of token categories and/or literal values, a sequence of con-
secutive token categories and/or literal value, etc.). A token
category may indicate a type of a token for the purpose of
parsing. Example of token categories include a variable, dif-

10

20

30

14

ferent types of mathematical operations (e.g., addition opera-
tor, subtraction operator, multiplication operator, division
operator, etc.), an assignment operator (e.g., used to assign a
value to a variable), a number, a type of number (e.g., an
integer date type, a floating point data type, etc.), an array, a
literal value, an end of statement, an identifier, a wildcard
(e.g., that represents any type of token category and/or literal
value), or the like. In some implementations, a token category
pattern may be represented as a regular expression (e.g., a
sequence of characters that forms a search pattern, which may
be used in pattern matching).

As further shown in FIG. 8, process 800 may include
identifying a replacement pattern based on the token category
pattern and/or the error (block 830). For example, client
device 210 may identify areplacement pattern using the token
category pattern and/or the error. The replacement pattern
may include another token category pattern that is different
from the token category pattern associated with the invalid
token string. In some implementations, client device 210 may
determine the replacement pattern based on the token cat-
egory pattern associated with the input text. Additionally, or
alternatively, client device 210 may determine the replace-
ment pattern based on the error associated with the input text.
In some implementations, client device 210 may determine
the replacement pattern based on both the error and the token
category pattern.

In some implementations, client device 210 may use a data
structure, pattern matching, a regular expression search, an
Internet search, or the like, to identify the replacement pattern
using the token category pattern and/or the error. For
example, client device 210 may store and/or access a data
structure that indicates an association between a replacement
pattern and a token category pattern and/or that indicates an
association between a replacement pattern and an error. Cli-
ent device 210 may search the data structure, using the token
category pattern and/or the error, to identify the replacement
pattern.

The table below represents an example of such as data
structure, which may store an indication of token category
patterns that map to replacement patterns in different sce-
narios. The below table does not show errors that correspond
to the replacement patterns. In some implementations, the
data structure may include such errors (e.g., as shown in
FIGS. 4B, 6B, and 6D). The below table also shows example,
which may or may not be included in the data structure.

Token Category
Scenario Type Pattern Replacement Pattern Example
Operator <var> <plus> <var> <assign> <var> a+ =7
Assignment <assign><...> <plus><...> becomes
a=a+7
Postfix Increment, <var> <plus™> <plus> <var> <assign> var> at++
Decrement, etc. <plus> <“1"> becomes
a=a+1
Nested Postfix <function> <left Intermediate: Example:
Increment, paren> <var> <plus> <function> <left paren> num2str(a++)
Decrement, etc. <plus> <right paren> <var> <right paren> becomes
<comma> <var> <plus> num?2str(a), a++

<plus> becomes

Final: num2str(a),a=a+ 1

Chain of
Assignments

<var> <assign><...>

<function> <left paren> (See FIGS. 6A-6E)
<var> <right paren>
<comma> <var> <assign>

<var> <plus><“1">

<var> <assign>
<var> <assign>

<semi>

<var> <assign><...>

<semi> <var> <assign>
<var> <semi> <var>

<assign> <var> <semi>

a=b=c=7;
becomes
c=7;b=c;a=b;

15

US 9,304,743 B1

-continued

16

Token Category

Scenario Type Pattern

Replacement Pattern

Example

Constant Abutting <var> <assign>
Identifier <number> <var>
Constant Abutting ~ <var> <left paren>
Parenthesized
Expression

Consecutive
Parenthesized

<left paren><...>
<right paren> <left

Expression
paren>
Named <namespace> <dot>
Arguments for <function> <left
Another paren> <var>
Programming
Language paren>
Dictionary for <left brace> <string>
Another <colon><...>
Programming <comma> <string>
Language <colon> <. .. > <right
brace>
Not Equal <>

Bitwise Operator <var> <pipe>

Assignment <assign><...>
Type Casting <left paren> <data
type> <right paren>
<var>
Nested <var> <comparator>

Comparisons <var> <comparator>

<var>

<yar> <ORR> <>

<var> <assign> <number>

<times> <var>

<var> <times> <left

<...><right paren> paren><. .. > <right paren>

<left paren> <. .. > <right

paren> <times> <left

paren> <. ..><right paren><...> <right paren>

<namespace™> <dot>
<function> <left paren>
<function> <left paren>

<assign™> <...><right <string><comma><...>

<right paren> <right
paren>
<function> <left paren>

<string> <comma> <. .. >

<comma> <string>
<comma> <. . .><right
paren>
<

<var> <assign> <var>
<pipe><...>

<data type> <left paren>
<var> <right paren>

<var> <comparator>
<var> <“&&’> <var>
<comparator> <var>

<var> <¢ > <L >

c=2y
becomes
c=2%y
2(x+y)
becomes
2% (x+y)
x+y)x-y)
becomes
x+y)*(x-y)

Example using Python
py.fen(Arg=1)
becomes
py- fcn(pyf)r;%S(‘Arg’),

{val’: x, foo’: 23}
becomes
struct(*var’, x, ‘foo,
23)

!x becomes ~x
X ! =2 becomes Xx ~=2
a|=true
becomes
a=altue
(double)x
becomes
double(x)
a<b<c
becomes
a<b&&b<c
X**2

Exponentiation

Comments << > <> <L >

becomes
X2
// comment
becomes
% comment

The above scenario types, token category patterns, and
replacement patterns are provided as examples. Other sce-
nario types, token category patterns, and replacement pat-
terns are possible and may be used in connection with the
techniques described herein. Furthermore, where one math-
ematical operator is described (e.g., an addition operator
<plus>), other mathematical operators may be substituted
(e.g., a subtraction operator <minus>, a multiplication opera-
tor <times>, a division operator <divide>, etc.).

As further shown in FIG. 8, process 800 may include
identifying a replacement token string based on the replace-
ment pattern and/or the input text (block 835). For example,
client device 210 may use the replacement pattern and/or the
input text (or the tokenized text) to generate a replacement
token string. The replacement token string may include a
sequence of two or more tokens (e.g., two or more consecu-
tive tokens) to replace the invalid token string. The replace-
ment pattern may identify a token category for a token to be
included in the replacement token string, and the input text
and/or the tokenized text may identify a corresponding token,
included in the token category, to be included in the replace-
ment token string.

As an example, assume that client device 210 tokenizes the
input text “Var_1+=100" to generate the invalid token string
[Var_1] [+] [=] [100], which is associated with an error.
Further, assume that client device 210 identifies a token cat-
egory pattern of <variable> <addition operator> <assignment
operator> <literal value> for this invalid token string. Here,
the token category of <variable> corresponds to the variable

40

45

50

55

60

65

“Var_1,” the token category of <addition operator> corre-
sponds to the plus sign (+), the token category of <assignment
operator> corresponds to the equal sign (=), and the token
category of <literal value> corresponds to the literal value of
“100.” In some implementations, client device 210 may store
an indication of these correspondences between token cat-
egories and tokens determined based on the input text. Client
device 210 may then use the stored indications to generate the
replacement token string based on the replacement pattern.

In some implementations, a token category pattern may
include multiple instances of the same token category. For
example, the input text “a=b+c” would have three instances of
a<variable>token category (e.g., one for “a,” one for “b,” and
one for “c”). In this case, client device 210 may store a
correspondence indicator that indicates a correspondence
between a token category and a particular token. For example,
client device 210 may use a correspondence indicator of
<variable(1)> to represent “a,’<variable(2)> to represent “b,”
and <variable(3)> to represent “c.”

Returning to the above example of “Var_1+=100,” which is
associated with an error and a token category pattern of <vari-
able> <addition operator> <assignment operator> <literal
value>, client device 210 may search a data structure using
the error and/or the token category pattern to identify a
replacement pattern of <variable> <assignment operator>
<variable> <addition operator> <literal value>. Using this
replacement pattern and the tokenized text (e.g., using stored
correspondence indicators that indicate which tokens corre-
spond to which token categories), client device 210 may
generate the replacement token string of [Var_1] [=] [Var_1]
[+] [100].

US 9,304,743 B1

17

As further shown in FIG. 8, process 800 may include
determining whether the replacement token string is valid
(block 840). For example, client device 210 may determine
whether the replacement token string is valid, in a similar
manner as determining whether tokenized text is valid,
described above in connection with block 815. For example,
client device 210 may parse the replacement token string
(e.g., using a parser) to determine whether the replacement
token string is compilable, executable, etc., or whether the
replacement token string returns an error.

As further shown in FIG. 8, ifthe replacement token string
is invalid (block 840—NO), then process 800 may include
returning to block 815 to identify an invalid token string. For
example, if client device 210 determines that the replacement
token string is invalid, then client device 210 may identify the
replacement token string as the invalid token string. In this
case, the replacement token string may be the invalid token
string, and processing may continue (e.g., iteratively) until
client device 210 determines a valid replacement token string.
In some implementations, if client device 210 cannot deter-
mine a valid replacement token string, client device 210 may
provide, for display via a user interface, an indication that the
input text is invalid and/or that valid program code could not
be determined based on the invalid input text. In some imple-
mentations, client device 210 may provide, for display, an
error message that indicates the error associated with the
invalid token string.

As further shown in FIG. 8, ifthe replacement token string
is valid (block 840—YES), then process 800 may include
determining valid program code, associated with the pro-
gramming language, based on the replacement token string
(block 845). For example, if client device 210 determines that
the replacement token string is valid, then client device 210
may generate valid program code based on the replacement
token string. The valid program code may be valid (e.g.,
compilable, executable, etc.) with respect to a programming
language associated with TCE 220. In some implementa-
tions, client device 210 may generate the valid program code
by de-tokenizing the replacement token string. For example,
client device 210 may de-tokenize the replacement token
string of [Var_1] [=] [Var_1] [+] [100] to generate the valid
program code of “Var_1=Var_1+100.”

As further shown in FIG. 8, process 800 may include
providing the valid program code (block 850). For example,
client device 210 may provide the valid program code (e.g.,
for display, for execution, to another device for display or
execution, etc.). In some implementations, client device 210
may provide a prompt for display via a user interface of TCE
220. The prompt may include the valid program code, and
may include one or more input mechanisms that permit a user
to accept or reject the valid program code. Additionally, or
alternatively, the prompt may include text or another indicator
that indicates to the user that the input text is invalid, that the
valid program code is recommended as a replacement for the
input text, or the like.

If the user accepts the valid program code, client device
210 may replace the input text with the valid program code
(e.g., in a user interface of TCE 220, such as a code editor),
may input the valid program code (e.g., as input to a user
interface of TCE 220), or the like. If the user rejects the valid
program code, then client device 210 may not replace the
input text with the valid program code, may not input the valid
program code, or the like. In some implementations, client
device 210 may replace the input text with the valid program
code, may input the valid program code, etc., without prompt-

10

15

20

25

30

35

40

45

50

55

60

65

18

ing the user. In this way, client device 210 and TCE 220 may
assist users in writing program code using an unfamiliar
programming language.

Although FIG. 8 shows example blocks of process 800, in
some implementations, process 800 may include additional
blocks, fewer blocks, different blocks, or differently arranged
blocks than those depicted in FIG. 8. Additionally, or alter-
natively, two or more of the blocks of process 800 may be
performed in parallel.

Implementations described herein provide a user with
feedback regarding the semantic accuracy of the user’s input
code or text. For example, the feedback may include an auto-
matic correction of input code, an indication on a user inter-
face that input code is incorrect and a suggestion to correct the
input code, or the like. This feedback may enable more effi-
cient, syntactically-correct implementation of code when the
input code is syntactically incorrect for the intended program-
ming language. Furthermore, implementations described
herein may conserve computing resources that would other-
wise be wasted by attempting to execute input text that is
invalid for a programming language.

The foregoing disclosure provides illustration and descrip-
tion, but is not intended to be exhaustive or to limit the
implementations to the precise form disclosed. Modifications
and variations are possible in light of the above disclosure or
may be acquired from practice of the implementations.

As used herein, the term component is intended to be
broadly construed as hardware, firmware, and/or a combina-
tion of hardware and software.

Program code (sometimes referred to herein as code) is to
bebroadly interpreted to include text-based code that may not
require further processing to execute (e.g., C++ code, Hard-
ware Description Language (HDL) code, very-high-speed
integrated circuits (VHSIC) HDL (VHDL) code, Verilog
code, Java code, another type of hardware and/or software
based code that may be compiled and/or synthesized, etc.),
binary code that may be executed (e.g., executable files that
may be directly executed by an operating system, bitstream
files that may be used to configure an FPGA, Java byte code,
object files combined together with linker directives, source
code, makefiles, etc.), text files that may be executed in con-
junction with other executables (e.g., Python text files, Octave
files, a collection of dynamic-link library (DLL) files with
text-based combining, configuration information that con-
nects pre-compiled modules, an extensible markup language
(XML) file describing module linkage, etc.), source code
(e.g., readable by a human), machine code (e.g., readable by
a machine), or the like. In some implementations, program
code may include different combinations of the above-iden-
tified classes of code (e.g., text-based code, binary code, text
files, source code, machine code, etc.). Additionally, or alter-
natively, program code may include code generated using a
dynamically-typed programming language (e.g., the M lan-
guage, a MATLAB® language, a MATLAB-compatible lan-
guage, a MATL AB-like language, etc.) that may be used to
express problems and/or solutions using mathematical nota-
tions. Additionally, or alternatively, program code may be of
any type, such as a function, a script, an object, etc.

Certain user interfaces have been described herein and/or
shown in the figures. A user interface may include a graphical
user interface, a non-graphical user interface, a text-based
user interface, etc. A user interface may provide information
for display. In some implementations, a user may interact
with the information, such as by providing input via an input
component of a device that provides the user interface for
display. In some implementations, a user interface may be
configurable by a device and/or a user (e.g., a user may

US 9,304,743 B1

19

change the size of the user interface, information provided via
the user interface, a position of information provided via the
user interface, etc.). Additionally, or alternatively, a user
interface may be pre-configured to a standard configuration, a
specific configuration based on a type of device on which the
user interface is displayed, and/or a set of configurations
based on capabilities and/or specifications associated with a
device on which the user interface is displayed.

It will be apparent that systems and/or methods, described
herein, may be implemented in different forms of hardware,
firmware, or a combination of hardware and software. The
actual specialized control hardware or software code used to
implement these systems and/or methods is not limiting of the
implementations. Thus, the operation and behavior of the
systems and/or methods were described herein without ref-
erence to specific software code—it being understood that
software and hardware can be designed to implement the
systems and/or methods based on the description herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
possible implementations. In fact, many of these features may
be combined in ways not specifically recited in the claims
and/or disclosed in the specification. Although each depen-
dent claim listed below may directly depend on only one
claim, the disclosure of possible implementations includes
each dependent claim in combination with every other claim
in the claim set.

No element, act, or instruction used herein should be con-
strued as critical or essential unless explicitly described as
such. Also, as used herein, the articles “a” and “an” are
intended to include one or more items, and may be used
interchangeably with “one or more.” Furthermore, as used
herein, the term “set” is intended to include one or more
items, and may be used interchangeably with “one or more.”
Where only one item is intended, the term “one” or similar
language is used. Also, as used herein, the terms “has,”
“have,” “having,” or the like are intended to be open-ended
terms. Further, the phrase “based on” is intended to mean
“based, at least in part, on” unless explicitly stated otherwise.

What is claimed is:

1. A computer-readable medium storing instructions the
instructions comprising:

one or more instructions that, when executed by one or

more processors, cause the one or more processors to:
receive input text via a programming environment associ-
ated with a programming language;

tokenize the input text to generate tokenized text;

identify an error within the tokenized text;

identify an invalid token string, based on the tokenized text

and the identified error, that is invalid for the program-
ming language;

identify a token category pattern based on the invalid token

string,

the token category pattern being a first sequence of token

categories;

identify a replacement pattern based on the token category

pattern and/or the error,

the replacement pattern being a second sequence of token

categories that is different from the first sequence of
token categories;

identify a replacement token string based on the replace-

ment pattern,

determine valid program code, associated with the pro-

gramming language,

based on the replacement token string; and

provide the valid program code.

20

25

35

40

45

55

20

2. The computer-readable medium of claim 1,

where the one or more instructions, that cause the one or
more processors to identify the replacement pattern, fur-
ther cause the one or more processors to:

identify the replacement pattern based on the token cat-

egory pattern and the error.

3. The computer-readable medium of claim 1, where the
one or more instructions, that cause the one or more proces-
sors to identify the replacement token string, further cause the
one or more processors to:

identify the replacement token string based on at least one

of:
the input text, or
the tokenized text.

4. The computer-readable medium of claim 1, where the
one or more instructions, when executed by the one or more
processors, further cause the one or more processors to:

determine whether the replacement token string is valid;

selectively identify another replacement token string,
the other replacement token string being identified when
the replacement token string is invalid,
the other replacement token string not being identified
when the replacement token string is valid; and
where the one or more instructions, that cause the one or
more processors to determine the valid program code,
further cause the one or more processors to:
determine the valid program code based on whether the
replacement token string is valid,
the valid program code being determined based on the
replacement token string when the replacement
token string is valid, and
the valid program code being determined based on the
other replacement token string when the replace-
ment token string is invalid.

5. The computer-readable medium of claim 1, where the
one or more instructions, that cause the one or more proces-
sors to provide the valid program code, further cause the one
Or more processors to:

provide, via the programming environment, a prompt that

permits a user to indicate whether to accept or reject the
valid program code;

receive user input that indicates whether to accept or reject

the valid program code; and

selectively provide the valid program code for input to the

programming environment based on the user input,

the valid program code being provided for input to the
programming environment when the user indicates to
accept the valid program code, or

the valid program code not being provided for input to
the programming environment when the user indi-
cates to reject the valid program code.

6. The computer-readable medium of claim 1, where the
one or more instructions, that cause the one or more proces-
sors to provide the valid program code, further cause the one
Or more processors to:

provide the valid program code for input to the program-

ming environment without user input.

7. The computer-readable medium of claim 1, where the
input text is program code in another programming language
that is different from the programming language associated
with the programming environment.

8. A method, comprising:

receiving input text via a programming environment,

the receiving being performed by one or more devices;
tokenizing the input text to generate tokenized text,
the tokenizing being performed by the one or more
devices;

US 9,304,743 B1

21

identifying an invalid token string based on the tokenized
text,
the identifying the invalid token string being performed
by the one or more devices;
identifying a token category pattern or an error based on the
invalid token string,
the token category pattern being a first sequence of token
categories,
the identifying the token category pattern or the error
being performed by the one or more devices;
identifying a replacement pattern based on the token cat-
egory pattern or the error,
the replacement pattern being a second sequence of
token categories that is different from the first
sequence of token categories,
the identifying the replacement pattern being performed
by the one or more devices;
identifying a replacement token string based on the
replacement pattern,
the identifying the replacement token string being per-
formed by the one or more devices;
determining valid program code based on the replacement
token string,
the determining being performed by the one or more
devices; and
providing the valid program code,
the providing being performed by the one or more
devices.
9. The method of claim 8, where identifying the replace-
ment pattern further comprises:
identifying the replacement pattern based on the token
category pattern and the error.
10. The method of claim 8, where identifying the replace-
ment token string further comprises:
identifying the replacement token string based on the input
text.
11. The method of claim 8, further comprising:
determining that the replacement token string is valid; and
where determining the valid program code further com-
prises:
determining the valid program after determining that the
replacement token string is valid.
12. The method of claim 8, where providing the valid
program code further comprises:
provide, via the programming environment, a prompt that
permits a user to indicate whether to accept or reject the
valid program code;
receive user input that indicates to accept the valid program
code; and
provide the valid program code for input to the program-
ming environment based on receiving the user input that
indicates to accept the valid program code.
13. The method of claim 8, where providing the valid
program code further comprises:
providing the valid program code via a user interface of the
programming environment.

10

15

20

25

30

40

50

55

22

14. The method of claim 8, where the input text is invalid
program code.
15. A device, comprising:
one or more processors to:
receive input text via a programming environment associ-
ated with a programming language,
the input text being invalid for the programming language;
identify an error associated with the input text;
identify an invalid token string, based on the input text, that
is invalid for the programming language,
the invalid token string being a string of tokens generated
based on the input text;
identify a token category pattern based on the invalid
token string,
the token category pattern being a first sequence of token
categories;
identify a replacement pattern based on the token category
pattern and/or the error,
the replacement pattern being a second sequence of token
categories that is different from the first sequence of
token categories;
identify a replacement token string based on the replace-
ment pattern,
determine valid program code, that is valid for the pro-
gramming language, based on the replacement token
string; and
provide the valid program code.
16. The device of claim 15,
where the one or more processors, when identifying the
replacement pattern, are further to:
identify the replacement pattern based on both the token
category pattern and the error.
17. The device of claim 15, where the one or more proces-
sors are further to:
tokenize the input text to generate tokenized text; and
where the one or more processors, when identifying the
replacement token string, are further to:
identify the replacement token string based on the token-
ized text.
18. The device of claim 15, where the one or more proces-
sors are further to:
determine that the replacement token string is invalid;
identify another replacement token string based on deter-
mining that the replacement token string is invalid; and
where the one or more processors, when determining the
valid program code, are further to:
determine the valid program code based on the other
replacement token string.
19. The device of claim 15, where the one or more proces-
sors, when providing the valid program code, are further to:
provide the valid program code via a user interface of the
programming environment.
20. The device of claim 15, where the one or more proces-
sors, when providing the valid program code, are further to:
replace, on a user interface of the programming environ-
ment, the input text with the valid program code.

#* #* #* #* #*

